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Abstract

In this work, we analyze the conductivity data of the nylon 6/FG nanocomposites using the normalized percolation equations and the

general effective equation. From the interpretations of the derived results, we demonstrate that the microstructure of the nanocomposites can

be readily deduced. Taking several factors into account, it turns out that the tunneling mechanism should be responsible for the observed non-

universality of the critical exponents. Experimental evidences show that the existence of the tunneling conduction should be attributed to the

particular structure of the prepared materials.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Nylon 6; Graphite; Nanocomposite
1. Introduction

In the proceeding paper [1], we have reported direct

fabrication of nylon 6/FG electrically conducting nanocom-

posites in the presence of foliated graphite (FG) nanosheets.

It has been shown that the overall behavior of conductivity

as a function of the FG concentration (Fig. 1) could be well

described in the framework of percolation theory. The

percolation threshold, fcz0.740 vol%, could be readily

determined from fitting the experimental points to the

classical percolation theory Eq. (2)

sm Z s0ðfKfcÞ
t (1)

This extremely low percolation threshold value could be

mainly attributed to the particular geometry of the foliated

graphite particles, which possess an average diameter of

about 12.1 mm and an average thickness of 51.5 nm.

Through the uses of mean-field theory and excluded volume

theory correlation of this particle morphology to the

percolation threshold could be achieved. However, it should

be noted that the percolation Eq. (1) could only be used to
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describe the conductivity above the critical concentration,

while description of the conductivity in the insulating region

is beyond its reach. Among the three parameters deduced

from Eq. (1) in the previous paper, only the value offc have

been discussed, interpretations of the values of the non-

universal critical exponent t and graphite conductivity s0
need more information.

In this article, we would like to interpret the non-universal

conductivity behavior of the as-prepared nanocomposites in

the first study. We will show that it is possible, through the

applications of effective media theories, to make deductions

about the particle shapes and spatial distributions in the

composites and the microstructure of the nanocomposites.

Thus, the critical exponent could be discussed using the

currently accepted models for non-universal exponents.

Results from further experimental studies devoted to the

temperature and electric field effects on the conductivity of the

nanocomposites are also to bepresented.These evidences then

not only identify the transport mechanisms in the FG

filled nanocomposites but also satisfactorily explain the

theoretically derived parameters.
2. Experimental

Procedures for preparation of nylon 6/FG nanocompo-

sites have been described in detail in the proceeding
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Fig. 1. Electrical conductivities of the nylon 6/FG nanocomposites as a

function of FG content.
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paper [1]. The data of conductivity as a function of foliated

graphite content are the same as those presented in the first

study and are re-plotted here in Fig. 1. For measurements of

temperature dependency of conductivity, three samples with

FG contents of 4.00, 5.00, 6.00 wt% were selected from the

series made in the first study. Samples were held between

electrodes connected to a DT9205A multimeter, and

conductive paste was used to achieve good electrical

contact. The conductivity data were measured both at

room temperature (25 8C) and at the temperature of liquid

nitrogen. While for measurements of electric field

dependencies of conductivity samples of various FG

contents above but not far from the percolation threshold

were newly prepared according to the same procedures. In

these measurements, the four-probe method was applied to

the whole set of the specimens. Two copper wires were

attached to each of the two opposite circular surfaces using

conductive paste. An YJ78 DC standard voltage generator

was used as the voltage source. To minimize the Joule

heating, the effective current passing through the specimens

was recorded immediately after a voltage was applied. The

current and voltage were collected with two DT9205A

multimeters. All the measurements were performed at 25 8C

and a relative humidity of 60%. In these two cases, the

samples are all disks of 20 mm in diameter and 2.0 mm in

thickness, with faces polished with 800-grit sandpaper. That

is to say, only the axial conductivity was measured in these

temperature and electric field dependency cases.
3. Results and discussion
Fig. 2. Plots of the conductivity sm as a function of (a) (fKfc) and (b)

(fcKf).
3.1. Normalized percolation equations

As mentioned above, Eq. (1) is valid only at concen-

trations above the percolation threshold. In order to interpret

the conductivity behaviors of the mixture of conducting and

insulating components before and after the critical

transition, one should use the following normalized
percolation equations (NPE) [2],

sm Z sh
fKfc

1Kfc

� �t

; fOfc (2a)

sm Z sl
fc Kf

fc

� �Ks

; fc!f (2b)

Here f is the volume fraction of the conducting component

and fc is the percolation threshold or the critical

concentration. The exponents t and s characterize the

conductivity in the conducting and insulating regions,

respectively. These equations give sh when fZ1 and sl
when fZ0, so that they can, in principle, fit data in the

range 0!f!1. However, they cannot apply in the cross-

over region [3]:

fc K ðsl=shÞ
1=ðtCsÞ!f!fc C ðsl=shÞ

1=ðtCsÞ

The conductivity data shown in Fig. 1 thus are fitted

simultaneously using equations in Eq. (2), with sh, t, s and a

single value of fc as adjustable parameters, while sl, the

conductivity of nylon 6 in this case, is fixed at 1.385!10K15

S/cm, the experimentally measured value for nylon 6

corresponding to the nanocomposite with an FG fraction

of 0.00%. The results of these fits are plotted in Fig. 2(a) and

(b). The best fitted values of sh, t, s and fc used to plot the
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theoretical curves are tabulated in Table 1, together with the

statistical uncertainties. As being well demonstrated,

simultaneous fitting of the data on either side of fc to

Eq. (2) could eliminate the problem of getting nearly

equally good statistical fits for different combinations of fc

and t [4]. Thus, the values of the derived parameters listed in

Table 1 should be the best statistical fits, within the error

limits. From Table 1, it is seen that the values of sh, t and fc

are nearly identical to those obtained using Eq. (1) in the

first study [1]. However, it should be recalled that the values

of t and s obtained here are clearly higher than the most

widely accepted universal ones, sunz0.87 and tunz2.0, in

three dimensions [2]. These results again indicate that the

conduction behaviors in the nylon 6/FG nanocomposites

should be non-universal. Therefore, it is necessary to give

discussions on this issue in order to have a clear under-

standing on the nanocomposites. We will return to this later.
3.2. General effective media equation

Strictly speaking, percolation theory only applies when

either the conductivity or the resistivity of one of the

constituent phases is zero. However, in real continuum

systems, the ratio of the conductivities is usually not high

enough for accurate application of percolation theory. When

the ratio of the conductivities of the binary disordered

systems is not very small, the conducting behavior of the

continuum media could be better accounted by effective

media theories (EMT) [5], which assume that each grain of a

binary (or higher) system is, on average, surrounded by a

mixture possessing the effective conductivity of the

composite medium. As far as our nylon 6/FG nanocompo-

sites are concerned, neither the so-called Bruggeman’s

symmetric medium nor the Bruggeman’s asymmetric

medium is a realistic model, since their morphologies

might lie between these two extremes. Thus, a suitable

semi-phenomenological formula developed by McLachlan

[6] can be used for these materials. This expression known

as general effective media (GEM) equation may be written

as

ð1KfÞ s1=tl Ks1=tm

� �
s1=tl CAs1=tm

C
f s1=th Ks1=tm

� �
s1=th CAs1=tm

Z 0

with AZ
ð1KfcÞ

fc

(3)
Table 1

Adjustable parameters derived from fit of Eq. (2) to the conductivity data

presented in Fig. 1

Parameter Fitted value

sh (S/cm) 6.92G1.44

t 2.32G0.07

s 1.90G0.09

fc (vol%) 0.740G0.049
where sm, sl and sh are the conductivities of the medium,

the low- and high-conductivity components, respectively.

f is the volume fraction of the high-conductivity component

(foliated graphite in this case) and fc is the critical

concentration (i.e. percolation threshold) as defined before.

t is an exponent related both to the percolation threshold and

the shapes of the grains making up the medium. In certain

limits Eq. (2) reduces to the Bruggeman’s symmetric and

asymmetric medium theories. When slZ0 or shZN and

0!fc!1, it has the mathematical form of the percolation

Eq. (2). This allows the following relations to be derived,

which gives

tZ
1Kfc

1KLl
Z

fc

Lh
Z

1

1KLl CLh

for oriented ellipsoids; and

(4a)

tZmlð1KfcÞZmhfc Z
mlmh

ml Cmh

for randomly oriented ellipsoids;

(4b)

where Ll and Lh are coefficients denote the effective

demagnetization (depolarization) factors for oriented low-

and high-conductivity grains in the direction of current flow

[6,7]. The parameters ml andmh are values calculable within

the limits of sl tending to zero and sh tending to infinity,

respectively, [8]. These four new coefficients are taken as

microstructural parameters. Thus, Eq. (4) can, in principle,

be used to make deductions about the particle shapes and

spatial distributions in composites.

The GEM equation is applicable to the entire range of

compositions, besides the results in the cross-over region. It

has been demonstrated to be very powerful and suitable for

many systems [6,9]. Now, we intend to apply this equation

to our experimental results. In practice, the least-squares

fitting was carried out with three variable parameters such

that the conductivity of foliated graphite sh, the critical

volume fraction of FG fc and the exponent t. While

the conductivity of the nylon 6, sl, is fixed at 1.385!10K15

S/cm. After this three-parameter fit, the GEM equation gives

the solid line shown in Fig. 3. The adjustable parameters and

the corresponding coefficients derived from equations in

Eq. (4) are summarized in Table 2. Within the uncertainties

of these fitted parameters, it is found that the values of sh,

t and fc are very close to those obtained by means of

percolation equations.

From Fig. 3 it is seen that the theoretical line excellently

agrees with the experimental points. This actually is an

encouraging result. Although the overall predication

capability of the generalized effective medium theory is

yet to be justified, the advantage of the GEM equation used

as a fitting model over the percolation conductivity Eq. (1) is

evident. In the following sections we will focus our

discussions on problems such that, whether there is a clear

correlation between the free parameters in the GEM



Fig. 3. Electrical conductivities of the nylon 6/FG nanocomposites as a

function of FG content. The solid line is the fit of the experimental data to

the GEM Eq. (3).
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equation and whether the microstructural parameters could

be used in deductions of grain morphologies and spatial

distributions. The non-universality of the critical exponent t

and the conductivity of foliated graphite sh need separate

discussions.
3.3. Derivation of grain morphologies and spatial distri-

butions from EMT

As argued by numerous authors [10,11], Lh/0 (i.e.

mh/N) means that the current completely avoids the

insulating grains and always tries to remain in a continuous

conducting sponge. Indeed, the bound LhZ0 corresponds to

an asymmetric medium in which insulating grains are

coated by the conducting component; in such a case the

critical volume fraction for the conducting phase to

percolate is fcZ0. Previous investigations on the carbon

black and flexible epoxy system suggested that the low

value of Lh for the conducting grains implies that the system

can be described either with the Malliaris and Turner [12] or

Kusy [13] models, in which the conducting grains coat the

insulating ones, or with the new grain consolidation model

proposed by Roberts and Schwartz [14]. In this model

the filler particles form conducting lumps and nodes

configuration, which has also been supported by the

evidence from SEM examination [9]. Hence, since the

present materials possess very low values of Lh and fc,

the conductive network formed by foliated graphite

nanosheets in the nylon 6/FG nanocomposite can be viewed

as a conducting backbone in the binary medium. Besides,

since Lh denotes the demagnetization factor associated with

the principal axis along which the electric field is impressed,
Table 2

Adjustable parameters (sh, t and fc) obtained from fitting of GEM Eq. (3) to the e

from equations in Eq. (4)

sh (S/cm) t fc (vol%) Lh!1000

7.49G3.33 2.34G0.12 0.743G0.042 3.17G0.18
its value is zero for flat disks with their faces or for needles

with their axes parallel to the field [7]. The experimental

value of Lh thus corresponds to highly flattened ellipsoids,

which is consistent with the flaky nature of the foliated

graphite particles. Similar results were also obtained for

compressed expanded graphite (CEG) [15].

Concerning the low conductivity component, nylon 6 in

this case, a high value of the effective demagnetization

coefficient Ll corresponds to this component wrapping

around or nearly completely coating the conducting

particles (foliated graphite grains) [10]. This is realistic

for the nylon 6/FG systems. This explanation of the

reasonably high values of Ll has also been assumed to be

in agreement with the morphology of compressed graphite

powders [10]. As for spheres LlZ1/3, the derived value of Ll
thus corresponds to ellipsoidal nylon 6 ‘grains’. Indeed, the

value of ml obtained in this case is consistent with what is to

be expected for randomly orientated ellipsoids [16].

Thus, through the use of the above specified theoretical

methods and the interpretations of the derived results,

together with the experimental evidences obtained in the

first study [1], it is now possible to make a clearer

visualization of the geometrical structure of the nylon

6/FG nanocomposites. Due to the high aspect ratio of the

foliated graphite nanosheets, they are effective in forming

conductive networks. Since nylon 6 is a semi-crystalline

polymer, it is obvious that the FG particles can only be

distributed in the amorphous part of the matrix. Thus the

probability for FG nanosheets to contact or overlap is

further enhanced, especially when they are dispersed with

random orientations. Meanwhile, the nylon 6 can be viewed

as filling in the empty volume in the porous FG backbone,

which is similar to the structure of ‘house of cards’. With the

presence of functional oxygen-containing groups on the

graphite sheets, a good wetting of the filler by the nylon 6 is

possible, accounting for a high Ll value.

Due to the contributing work of Meredith and Tobias [8],

calculation of the aspect ratio of the flattened spheroids can

be realized by relating the derived microstructure par-

ameters, mh(l) and the depolarization factors Lh(l). Indeed,

this approach has been successfully applied to the

investigation of various carbonaceous materials under

compaction [10,15,17]. In dealing with the effective

conductance of concentrated suspensions of ellipsoidal

particles, Meredith and Tobias [8] derived and gave an

expression as

1K f Z ðKmÞ
b Km KKd

1KKd

� �
Km CaKd

1CaKd

� �g

(5)
xperimental data shown in Fig. 1, and corresponding coefficients calculated

Ll mh ml

0.576G0.022 315G24 2.36G0.12
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Fig. 4. Morphological parameters mh and ml for high (low) conductivity

phases versus the aspect ratio kZa/c of these oblate phases.
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with fZvolume fraction of the dispersed phase

Km Z
km
kc

km, conductivity of the mixture; kc, conductivity of the

continuous phase

Kd Z
kd
kc

kd, conductivity of the dispersed phase, and

aZ
2K3La

3La C1

bZ 3La
1K2La

3La K2

� �

gZ
2ð3La K1Þ2

ð3La K2Þð3La C1Þ

where La is one of the three depolarization factors,P
i L

iZ1, describing the shape of ellipsoids with semiaxes

aZbsc. Since the parameters mh and ml are defined in the

frame of Bruggeman’s asymmetric theory [6,16] that

sm Z slð1K f ÞKmh Z slð1KfÞKmh ; with f Zf; if the dis

sm Z shð1K f Þml Z slf
ml ; with f Z 1Kf; if the dispers

(

Thus, based on the relation LaZLbZ1=2ð1KLcÞ,

together with Eqs. 5 and 6 in the limits kdZshZN and

kdZslZ0, respectively, mh and ml are derived as

mh ZK
1

b
Z

2K3Lah
3Lahð1K2LahÞ

Z
1C3Lch

3Lchð1KLchÞ

ml Z
1

aCbCg
Z

3Lal C1

6Lal ð1KLal Þ
Z

5K3Lcl
3ð1KLc2l Þ

8>><
>>: (7)

It is now possible to calculate the aspect ratio of the

graphite nanosheets dispersed within the nylon 6 matrix,

considering that the graphite sheets are similar to oblate

(flattened) spheroids with semiaxes such that aZbOc. Then

the eccentricity e is linked to the corresponding depolariz-

ation factor Lc as

eZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
c

� �2
K1

q

Lc Z
1Ce2

e3
ðeK tgK1eÞ

8><
>: (8)

In this case, if aZbZc, i.e. corresponding to spheroids,

the eZ0, and LaZLbZLcZ1/3. Then according to Eq. (7),

mh and ml take their minimum values 3 and 3/2,

respectively. As the aspect ratio rises, Lc/1 and LaZ
Lb/0, corresponding to thin disks. Hence, mh and ml both

tend to infinity. The values of mh and ml versus the aspect

ratio of the grains are shown in Fig. 4.

The aspect ratio value of foliated graphite calculated

from Eq. (8) is listed in Table 3. For the sake of comparison,
the aspect ratio values derived from other methods are also

presented. It is seen that the values derived in the framework

of EMT is much higher than those obtained from the

experimental measurements, mean-field theory and

excluded volume theory which have been discussed

previously [1]. Because of this obvious inconsistency, one

may have to first take into consideration some of the

requirements for the application of EMT [5,6,17].

Firstly, effective media theories consider a medium

completely filled with ellipsoids with an infinite range of

sizes. In practice, such an extreme situation is never

satisfied, even if the particle size distributions of the

powders are sometimes broad. In addition, the number of

particles must be sufficiently high in order for any given

grain to be assumed to be homogeneously surrounded by the

medium. As can be observed from the laser counting

analyses [1], the size distributions of the foliated graphite

are far from what can be called infinite. Although their

thickness is in the nanometer range, so that the number of

particles may be very high, the requirements of the effective

media are still difficult to be met.

Secondly, Eq. (6) is such that the limits shZN and slZ0
are assumed, and for situations which fcZ1and fcZ0 are

implied, respectively. Thus, although derivation of the

aspect ratio of carbonaceous powders could be well

performed in the cases of carbonaceous powders and EG

under compaction [15,17], the present nylon 6/FG system is

not the case.

Furthermore, derivation and application of Eq. (4b)

assume a random orientation of the grains. Owing to the

flake morphology of the foliated graphite nanosheets, an

orientation of the particles might be expected [1]. Hence,

Eqs. (4b), (6) and (7) might not be obeyed fully. Then it is

possible that while the GEM can be perfectly applied in



Table 3

Values of the aspect ratio derived from various approaches

EMT MFT EVT EXP

370G28 159G11 154%k%239 235G10

EMT, effective media theories; MFT, mean-field theory; EVT, excluded

volume theory; and EXP, experimental [1].
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describing the conduction behavior of the composites, the

deduced microstructure parameters cannot be used to

accurately identify the particle shape of the filling phase.
Fig. 5. Variations of sm with respect to fK1/3 for nylon 6/FG

nanocomposites with FG content above the percolation threshold.
3.4. The critical exponent and conductivity of the foliated

graphite

Now that the structure of the present nanocomposites has

been interpreted, it is possible and necessary to carry out

separate discussions on the values of the other two

parameters, the critical exponent t and the conductivity of

the foliated graphite sh.

It is apparent from Tables 1 and 2 that the values

obtained for the critical exponents, beyond experimental

and statistical uncertainties, are larger than the universal

ones predicted from computer simulations. From the

microstructures just discussed, the structure of the nylon

6/FG system should be described in the frame of continuum

percolation, for which there are two features having no

counterparts in lattice percolation [18]. The first one is the

above-mentioned dependence of percolation threshold on

the structure; and the second one is a relation between the

critical exponents and the local geometrical properties of the

system, that is to say the value of the critical exponents

depend on the structure. One origin for the increase in t is

the anisotropy of the conductivity. However, in similar

systems, Celzard et al. [19] demonstrated that this

mechanism could probably be ruled out.

Another consideration is the influence of the existence of

the tunneling conduction [20]. From the conductivity

figures, it is seen that the conductivity values of the nylon

6/FG nanocomposites approach a limiting conductivity

(about 10K3 S/cm) in high-concentration domain. Such

saturation of conductivity suggests that there might have

polymer in the conductive network. Actually, experimental

evidence [20] indicates that in carbon black filled polymer

composites, even for compounding under high pressure and

for concentration greatly higher than the percolation

threshold, the conducting aggregates are always separated

by thin layers of insulating polymer. As demonstrated by the

interpretations of the mircostructural parameters, wrapping

of the FG particles by the nylon 6 is possible. In the present

case, owing to the oxidation effects during the preparation of

the precursor GICs [21–23], some carbon double bonds

were oxidized, leading to the presence of oxygen-containing

functional groups on foliated graphite [24,25]. This is

supposed to facilitate physical and chemical interactions

between FG and some polymers (or monomers) [26].
Indeed, during the fabrication of nylon 6/FG nanocompo-

sites, the monomer was found to wet the FG particles very

well. This might be due to the particular surface properties

of the FG and results in enhanced interactions between the

FG and the nylon 6 matrix, which could be supported by our

thermal analysis evidences [1,27]. Then upon completion of

the in situ polymerization, presence of nylon 6 coatings

around the FG grains is quite realistic. The FG particles

forming the percolation-like network thus only touch

‘electrically’ [28]. The measured finite macroscopic

conductivity must be attributed to the existence of

interparticle tunneling.
3.5. Tunneling conduction

Tunneling conduction is a thermal fluctuation assisted

transport process [29]. In this case, the conductivity of a

composite can be described by the behavior of a single

tunnel junction and expressed, in a first approximation, as

sm Z scexpðK2ctdÞ (9)

where sm is the composite conductivity, sc is a constant and

d is the distance between conductive particles. In this

expression, ctZ ð2mVðTÞ=Z2Þ1=2 , where m is the mass of the

charge carriers, V(T) is the temperature modified barrier

height and Z is Planck’s constant divided by 2p. This

expression can be envisioned as a simple tunneling

conductivity in which the increasing temperature induces

the energy barrier height to decrease [30]. This is actually

supported by our temperature variation data that sample

resistances increased by about twenty times when samples

were cooled from room temperature to that of liquid

nitrogen. If a random distribution of particles is assumed,

the mean distance among particles has been shown to be

proportional to fK1/3 [30]. Then if Eq. (9) is valid, drawing

log sm as a function of fK1/3 will yield a straight line.

Indeed such a linear dependence (Fig. 5) is also observed for

our materials in concentrations well above the percolation



Fig. 7. Fit of the current density (J) as function of electric field intensity (E)

to the relation JZS0E
b.
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threshold, in support of Eq. 9. This has also been justified in

the polyethylene-graphite composites [30].

In addition, in measurements of electric field dependency

of conductivity, all samples of nylon 6/FG nanocomposites

were found to exhibit non-linearity in the I–V character-

istics. Fig. 6 shows in logarithmic scales two typical

examples of the I–V curves. The curves are current limited

within the range of measurements. At sufficiently low

voltages (V), the curves are linear. With increasing bias, the

curves deviate from linearity and bend towards the current

(I) axis. Furthermore, we have also verified that only under a

given low electric field this behavior is reversible.

Previously, a simple formula was proposed to describe

the nonlinear conduction in conducting polymer composites

[31]. In this formula the current density and the field

intensity is related in a power law equation

J ZS0E
b (10)

where S0 is a constant and b is an exponent greater than

unity. Clearly, when the conductive behaviors of the

conducting composites are ohmic, the parameter b equals

to unity. However, when the conduction in the composites

deviates from the linear behavior, b is generally found to

increase above 1.

Fig. 7 presents the current density as a function of

electric field for nylon 6/FG nanocomposites fitted by

Eq. (10). It can be seen that the agreement between the fitted

curves and the experimental points is quite good. The more

the foliated graphite in the nanocomposite the better the fit

is. The values of the constant S0 and the exponent b derived

from the computer fitting are plotted in Fig. 8 as a function

of foliated graphite content. For comparison the original

percolation curve and linear conductivity are also presented

in the same plot. From Fig. 8, one can easily read that the

exponent b increases from 1.06 at a foliated content of fZ
1.950% to 1.55 as the filler fraction approaches the

percolation threshold fcfrom above. Meanwhile, the

constant S0 increases in almost the same track of the linear

conductivity s0 versus f. Since the value of the exponent b
Fig. 6. Two typical nonlinear I–V curves of the nylon 6/FG nanocomposites

with FG volume content as indicated.
is an indication of the contribution of the nonlinear

mechanisms, one can conclude that the greater the deviation

of the exponent b from unit, the greater the non-linearity in

the composite.

Considering that the foliated graphite in the nylon 6/FG

nanocomposites is ohmic, one may expect the tunneling

across the thin insulating polymer layers to contribute

additional mode of conduction mechanism, besides the

usual conduction through conducting graphite, to the

conduction of the nanocomposites subjected to higher

electric field. Thus, the greater the values of b, the more

significant the tunneling conduction in the nanocomposites.

As f/fc from above, both the width and percentage of the

insulating polymer layer increase, thus a correlation

between the tunneling conduction and the FG content f

can also be qualitatively established.

This tunneling mechanism also accounts for the fitted

values of the conductivity of the foliated graphite. It is seen

from Tables 1 and 2 that the obtained sh values are actually

far below the value to represent accurately a typical graphite

particle, which has a magnitude in the order of 104 S/cm

[32]. However, it is obvious that if the contacts among

graphite particles are of the tunneling type, it will definitely

give rise to higher contact resistances.
Fig. 8. The exponent b, constant S0, linear conductivity s0 and percolation

curve of conductivity s as a function of foliated graphite volume fraction f.
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4. Conclusions

By examining the conductivity data of the nylon 6/FG

nanocomposites, electrical transport properties in this kind

of materials have been studied. The normalized percolation

equations could well describe the conductivity of the

nanocomposites both above and below the percolation

threshold, while the general effective media equation was

demonstrated to be more powerful. The GEM equation not

only could successfully model the conductivity to the entire

range of compositions, but also contains free parameters

that could be used to derive information concerning the

grain shapes and spatial distributions in composites. Despite

that notable deviations of the calculated values of the aspect

ratio from the experimental one were observed, the derived

microstructural parameters accurately deduce the micro-

structure of the nanocomposites. It should be the particular

structure of the present nanocomposites that results in the

non-universality of the critical exponents. Taking several

factors that may affect the critical exponent t into account, it

turned out that the tunneling mechanism should be here

responsible for the observed results. Such tunneling

conduction could be readily identified by a simple

examination of a new dependency of the conductivity on

the foliated graphite concentration greater than the

percolation threshold. Experimental evidences from the

measurements of temperature and electric field dependen-

cies of conductivities also justified that there indeed exists

tunneling conduction.
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